LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2015
MT 2503 - ANALY. GEOM. OF 3D, FOURIER SERIES \& NUM. THEORY
Date : 17/04/2015
Dept. No. \square Max. : 100 Marks
Time : 01:00-04:00

PART - A

ANSWER ALL THE QUESTIONS:

1. Find the equation to the plane through $(1,2,3)$ parallel to the plane $4 x+5 y-3 z+7=0$.
2. Write the equation of the symmetric form of the straight line.
3. Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}-2 y-4 z=11$.
4. Write the equation of the tangent plane to the sphere.
5. Write the formula for Fourier series.
6. Define odd and even functions.
7. Find the number of divisors of 360 .
8. State Fermat's theorem.
9. If a, b, c are positive, and not all equal, then show that $(a+b+c)(b c+c a+a b)>9 a b c$.
10. Show that $\mathrm{n}^{\mathrm{n}}>1.3 .5 \ldots(2 n-1)$.

$\underline{\text { PART - B }}$

ANSWER ANY FIVE QUESTIONS
11. Show that, if a plane has intercepts a, b, c on the coordinate axes and is at a distance p from the origin , then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
12. Show that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2} ; \quad \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find their point of intersection and the equation to the plane containing them.
13. Find the equation of the sphere whose centre is the point $(6,-1,2)$ and which touches the plane $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-2=0$.
14. Find the equation of the sphere through the points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
15. Express $f(x)=x, \quad(-\pi<x<\pi)$ as a Fourier series with period 2π.
16. Find the highest power of 3 dividing 1000!.
17. Show that $13^{2 \mathrm{n}+1}+9^{2 \mathrm{n}+1}$ is divisible by 22 .
18. Show that $\left(x^{m}+y^{m}\right)^{n}<\left(x^{n}+y^{n}\right)^{m}$ if $m>n$.

PART - C

ANSWER ANY TWO QUESTIONS
19. (a) Find the equation of the plane through the points $(2,2,1)$ and $(0,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.
(b)Find the shortest distance between the lines
$\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} \quad$ and $\quad \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
20. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B, C. Find the equation of the circumcircle of the triangle ABC and determine also the coordinates of the centre and radius.
21. (a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $(-\pi \leq x \leq \pi)$.
(b) Show that $8^{\text {th }}$ power of any number is of the form 17 m or $17 m \pm 1$.
22. (a) State and prove Wilson's theorem.
(b) If $s=a_{1}+a_{2}+\ldots+a_{n}$ then show that $\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\ldots+\frac{s}{s-a_{n}}>\frac{n^{2}}{n-1}$ unless $a_{1}=a_{2}=\ldots=a_{n}$.

